Analysis of ${}^{40}Ca(\alpha,\gamma){}^{44}Ti$

Christof Vockenhuber

Summary of Nov 05 run

- 150 runs at 50 different energies
- most of the runs were taken at q = 14+
- different target pressures: 1, 2, 4 Torr
- 2 IC pressures: 20 Torr, 17 Torr (<1010 keV/u)
- attenuated beam run into IC
- CSB foil changed 15x, a few runs without CSB

Analysis Goals

$$Y = \frac{N_{44\mathrm{Ti}}}{N_{40\mathrm{Ca}} \ F_q \ \epsilon}$$

- energy scale
- ⁴⁴Ti recoil data
- ⁴⁰Ca on target
- ⁴⁴Ti Charge state distribution
- BGO γ-ray efficiency

Energy Scale

- from Prague magnet
- measured at MD1 after gas and CSB
- from run MD1 data
- from attenuated IC runs
- from leaky beam peak
- timing relative to RF

Energy difference

Energy difference recommended energy vs. Prague energy

⁴⁴Ti recoil data

- cuts on IC coinc. spectrum \rightarrow plot TOF
- cut on TOF \rightarrow plot IC spectrum
- cut on IC pulse width spectrum
- plot $g0vg1 \rightarrow identify$ outliers
 - \rightarrow number of ⁴⁴Ti recoils

- SB1 counts of entire run
- R-value
 - FC4 reading before the run
 - SB1 counts in first minute
 - dead time correction using ratio of presented and acquired tail triggers
 - pressure and energy

⁴⁴Ti Charge state distribution

- measured for 12+ ...16+ at 4 and 8 Torr at a ⁴⁰Ca beam energy of 1.135 MeV/u
- depends slightly on target pressure
- charge state distribution depends on energy
- 40 Ca distribution measured at 1.13 and 0.89 MeV/u

Change of ⁴⁰Ca Charge state distribution

BGO γ-ray efficiency

- direct comparison between singles and coincidence spectrum
- depends on γ ray multiplicity and energies
- GEANT simulations