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2.3. EXPRESSIONS FOR y»-RAY ANGULAR DISTRIBUTIONS

In the following subsections, general expressions for the y-ray angular distributions
of direct capture (primary) and subsequent nuclear decay (secondary) transitions will
be discussed. MNlustrative examples, relevant to the subsequent experiments, will also
be presented. The derivation of these expressions is described in the appendices.

2.3.1. Direct capture transitions. The angular distribution for the direct capture
y-ray transition is given (appendix A.1.1) by:

w(3) = Z(llc"iolw)zl(['ll LI; 1, k)Q, Pi(9). (11)

These expressions depend only on the orbital angular momenta /; and k of the initial
asd finel state, respectively and on the multipole order, L, of the y-ray transition. They
are independent of the total spin J of the final state as well as of the intrinsic spins
of the target nucleus /, and projectils j, (i.c. the channel spin § = j,+j,). Examples
of the most common angular distributions observed in the present work are:

Ei(p—=s) W($) =1-P,9) q,sin’ s, |/ s - ’/J

Ei(p—~d) W) = 1-APd)al+}sin’s, L (Hic.- Y

ENf -d) W(3) = 1—$P,(9) @1 +sin’ 5.

A semsitive test of the sbove t ahgular distributions is provided by the
Wady of the direct capture process in the two reactions '‘O(p,7)''F ead
10(p, 7)'F. The angular distributions to final states with the same orbit  should bs
identical in the two reactions despite the different target spins (J, = 0 and §) ss well
 the different possible total spins (J; = S+ ). Examples are described in subsssts.
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The summation over the magnetic indices can be performed ith the help of the usual
mlations between CG and Racah coefficients and results in

W(3,) = ¥ (1,01, 01kO)W (I, I, 1, I,; L, k)

< W(Iy 1303 1; SK)Z\(LyJ3 Ly Jy; Iy k)P(D;). (A32)

= the ease of & mixture of (L,, L) multipoles in the secondary transition, it is
W to generalize the above expression to that given in subsect. 2.3.2
) \i9)). I the direct-capture transition (unobserved primary) can proceed from
Wrel partial waves /, to several orbits /, in the intermediate state, then the final
Muine distribution for the secondary transition is given by an incoherent sum over the
Wlividusl Somponcnts:

W) = T 00 Wi (3:). w3 |
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CHAPTER 6

Coefficients and functions used in
angular correlation analysis

1. Ceeflicients
1.1. GENERAL

The basic coefficients required for angular correlation analysis are the
Clebsch—Gordan, Racah and 9/ coefficients. These are not tabulated in the
present work, but fairly extensive tabulations are available (see § 1.7 below).
The widespread appearance of electronic digital computers with sophisticated
program compilers makes it fairly easy to compute coefficients as they are
required and removes in some degree the need for extensive tabuletions. An
advantage of this situation is that coefficients beyond the renge of existing
tables are readily obtainable. The many parameters of & 9-; symbol render
impossible any attempt at a compiete tabulation even if ressonable limitations
on the spins are imposed. Computer programs that saelyae measured corre-
lations by, for example, the least squares method, can readily contain
subroutines to calculate the required coeficients so that the user need only
specify the sets of spins to be tested.

The 3-j and 6~/ symbols are coefficients equivalent to the Clebsch-Gordan
and Racah coefficients respectively but are more symmetrical than the latter.
There has been a trend toward the use of these cosfcients in the literature.
The unsymmetric coefficients have been used in the present work, and their
relation to the symmetric ones is indicated below.

1.2. Z AND 2Z: COEFFICIENTS
The Z and Z, coefficients are defined by eqs. (3.3) and (3.4) which are
repeated below
— Z(1bI'b"; ak) = 166’ (10, IOYKO) W (1bT'b': ak) Davbils
2, (LbLY ;ck) = (=Y ~“* "' LL'6B (L1, L — 11k0) W(th.’h’;ck).;)’"
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The X coefficient arises in the relation between
different ways of combining the vectors a, b, 4, e to give a
resultant X. In terms of Clebsch-Gordan coefficients, it is
given by
(an]ec)(del£)(cf k)

4 1 { 1 b
= y (2g+1)%(2h+1) Z(2c+1)%(2£+1) ?(adl g) (ve |n) (ghlk) X (g .
o E hk

&h
Trhe X coefficient may also be expressed in terms of Raceh

coaffieients:

a8 D¢
X (d [ r> 2(2z+1)w(abkf.cz)ﬂ(dfhb ,ez)W(adknh,gz) .
g A X |

From either definition, it follows that X is defined only if the
paramaters in each row and each column form the sides of a
tpiangle with integral sum. The X coefficient is unchenged by
inteéehanging the roles of rows and columns, while interchange
of any two rows or any two columns multiplies X by
(_1)a+b+e¢d¢e+f+g+h+k. As a consequence of the latter zywmetry,
if two rows or two columns are the same, X vanishes unlieas the
third has even sum,

If any parameter vanishes, the X coefficient may be

pernuted inte

C

(I eN
)

b
X <% §> = (=1)8*8~8-0 (2541) *(2e+1)'* W(abde,cg) 8, gh
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and for (p,a,p) (trangition specified by 511131,2123?,2252)

g N 31 &2 3 b
tt' _Z( -1) Z(l j 2 31,5 )G0 k k12 \c2 z(L 32 2 2,8 I{Z)Ak1k2k12 . f‘
X, kK ; 31 J; c
15242 12 2 i
b
_ g
with & = 8,+8,+),+3, . A
75 obtain the (v,a,p) and (v,a,y) correlations only fornal :
changes are needead.
(c) Intepmediate Gr’:r‘lfl Radiation i
We assume here that R12 is a gamma-ray.
1, Lgs 3 i
1 *q92 “2 ~Lqo+lqo=Lio=-ll{o=kq~-ko+2 3
Define 0, [k, K, K, | = R(1 122 {2-042-kq-k2+2y P
¢ L) D
33 B2 I2 - ! i+
" b oo oy} e 2\
. ! I o 1 ) v
x (2;12¢1) (2L12+1) (2k1+1) (2k2+1) (L12L12 11lk120)x y 49 %o P
(j\ 1! LO 5' ?
| 1 Y12 “2 L3
?":‘r-'b(:’- (Erre Az""‘ 1 ‘
Tor (2,7,¥) then (transition specified by s 2341 035Ls15) S
V \ 1 4 /jj 112 :2 [ 1 ‘b B
g =l ) (17340435584, "*({1 12 Ko | 24(La350035: 5% A e .
= | i | | (<
K Jy Lyp J 4 ,
AL : s Y )

with y = s,+I?¢J.102;¢L12+L1‘2+L2*L‘2*.1,*.12 .

Tor (v,Y,Y) we need only replace s1+l1+£'1 by I,+L,+L; and

ARy 342434 080k,) By 2,(R3,L434,1,k,) and aivide by 2.
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one firnds that

" - - X ' [} *® [} L ] t
Tegt = Z (-1)"8 °k'10(I‘1L1) °k20u'21'2) °1c120(L12L12)

kq1k2kKq2
J1 J2 T2
" i i
x W(LydqLydsTkq)W(LpIop35 Tok2) X 34 95 Lo A xx
K, k, &
1 ¥2 K12

12

where Asl ¢12+L1+L2¢L12*L12'31 32

[(231+1)(231+1)(232+1)(232+1)(2k j+1)(2x +1]*

colIL') = z (=1) T Yo (1) *al L 1) (LL' -1t [ O)

M | ,
3 5
(k X X B +4 )[( (uﬂ) ‘]
kykoky2 2 2“‘“2‘ 12 #1*¥2 2k, +1) (2K, +1)(24c12
B4M2 '

— Hyth2 »
PO )Yk Sogp%,,

(842%42)

t

The f2(6,¢) are the usual srheri

that i
Y(O,p) = (_1)$(m+lm|) Q-iml): gim 28+ Pi“‘(cos 8)
8 J(aumn! e &

cal harmonics, 8O normalized

where the )i?‘ are the assocliated Legendre functions ot the

rirst kind. The summation 18

X k2k12 consistent with the tpiangular eond

- 4 and X coefficients and the properties of the a(EM).

{0 be extended over all valucs
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