## Charge-particle channels in $\beta$ decay of <sup>11</sup>Li



#### Proposal E1030: Search for Deuteron Emission in <sup>11</sup>Li: DELIS

IKS, University of Leuven

I. Mukha, J. Ponsaers (PhD student), R. Raabe, M. Huyse, P. Van Duppen

#### TRIUMF

A. Andreyev, L. Buchmann, R. Chakrawarthy, J. D'Auria,

M. Huyse, A.C. Morton, C. Pearson, M.B. Smith, P. Walden

Istituto Estructura de la Materia, CSIC, Madrid M.J.G. Borge, O. Tengblad

University of Aarhus C.A. Diget, K. Riisager

Simon Fraser University C. Ruiz

**Mc Master University** J. Pearson

Dept. of Physics, Colorado School of Mines TRSUMFZ Pebruary 15, 2005



# The $\beta$ -decay of <sup>11</sup>Li





Figure from: I. Mukha et al., NPA 616 (1997) 201c

## E1030 Proposal: $\beta$ decay to high-lying states and continuum

20.6



 $2\alpha + n$ 

#### $\beta$ -decay to high-lying states

- •Large  $B_{GT}$  values due to a large overlap of states  $\rightarrow$  conclusions are less model-dependent
- •One such state suggested in <sup>11</sup>Be at E\*~18.1 MeV (~18.5 MeV) B<sub>GT</sub>>1.6±0.3. (Presumably it has <sup>9</sup>Li+(pn) structure)

#### $\beta$ -decay to the continuum

- •Rather simple expressions for the spatial overlap matrix elements describing the decay – easier to interpret results
- Most favorable case:  $\beta$ -delayed deuteron emission

See also <sup>6</sup>He

## E1030 Proposal: β decay to high-lying states and continuum



ISOLDE, 1996

deuteron emission measured together with t emission

- total b.r. (1-3)×10<sup>-4</sup> (I. Mukha et al., PLB 367 (1996) 65,
- M Borge et al, NPA613(1997),199)
- low detection efficiency (2.5%) -> low statistics (~ 250 cts)
- $\boldsymbol{\cdot}$  the  $\beta$  background subtracted using  $^{9}\text{Li}$  data
- $\boldsymbol{\cdot}$  could NOT separate d&t; <sup>6</sup>He &  $\alpha$ ; <sup>9</sup>Be and <sup>10</sup>Be
- large uncertainties of b.r.: different detectors, recoil out the target
- high energy threshold

#### Needs to be confirmed/remeasured



#### E1030 Proposal: goals





#### Our goals:

#### Measure:

- •Branching ratio of the <sup>9</sup>Li+d channel
- •Branching ratio of the <sup>8</sup>Li+t channel
- •Energy spectra of d and t

•Branching ratio of all channels from E\*~18.1 MeV in <sup>11</sup>Be

#### <sup>11</sup>Li in TRIUMF

- •<sup>11</sup>Li beam needed for our implantation technique (15 MeV)
- Intense and <u>pure</u> beam (not available elsewhere)

# Our method: Implantation & Decay in the DSSSD 🛞 📖

#### IMPLANTATION:

- Segmented double-sided strip detector: 16×16 mm<sup>2</sup>, 78 µm thick 48×48 strips, 300 µm wide → 2304 pixels
- of 300  $\mu\text{m}$  x 300  $\mu\text{m}$  in size
- •<sup>11</sup>Li implantation (E<sub>beam</sub>~15 MeV):
- middle plane of the detector (~40  $\mu\text{m},$  SRIM)
- uniform profile (as much as possible)





#### DECAY (time-position correlations):

- •After implantation, the subsequent ion decays (including possible daughter decays) are detected as events in <u>the same pixel</u> with ~ 100% efficiency (typical d,t, $\alpha$  ranges are <40  $\mu$ m at E<2 MeV).
- •In contrast,  $\beta$  particles deposit very little energy in <u>one pixel</u> but can deposit more energy in <u>a few strips/pixels</u> (multiple-hit events)  $\Rightarrow$  energetic  $\beta$ 's are strongly

suppressed by multiplicity 1 requirement and

TRIUMF February 15, 2005

energy matching

# Experimental example: $\alpha$ +d channel in the $\beta$ -decay of

Beam-off period, Strip number of the front side



Beam-off period, Strip number of the front side

# Experimental example: $\alpha$ +d channel in the $\beta$ -decay of



D. Smirnov et al., NIM in preparation (IKS, Leuven)



# Experimental example: $\alpha$ +d channel in the $\beta$ -decay of



- •1.86×10<sup>8</sup> <sup>6</sup>He ions implanted in the DSSD
- 10<sup>4</sup>  $\beta$  particles detected (single pixel/hit)
- suppression factor 2×10<sup>-4</sup>
- good agreement with literature data, e.g. TRIUMF: 1.8(9)×10<sup>-6</sup> for E>525 keV
  D. Anthony et al., PRC65(2002), 034310)
- •well-understood technique and detector response (including simulations)



# Experiment: Channel selections in the <sup>11</sup>Li decay



#### KEY IDEA: use time-position correlations with the daughter products!





### <sup>11</sup>Li at 15 MeV

- •We want ~ 2500 events in the <sup>9</sup>Li+d spectrum (c.f. previous studies <250 cts)
- •With ~200 pps and the identification efficiency given above
- $\rightarrow$  10 12-hour shifts
- <sup>9</sup>Li at 13.5 MeV + <sup>8</sup>Li at 12 MeV (can work with up to 10<sup>4</sup> pps)

(to measure the energy spectra for 'pure' <sup>8,9</sup>Li – desirable in the analysis)

 $\rightarrow$  1 12-hour shift

Beam handling, preparation

 $\rightarrow$  1 12-hour shift