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Multichannel R-matrix analysis of elastic and inelastic resonances in the 21Na + p compound system
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A multichannel R-matrix formalism was used to fit 21Na + p resonant elastic and inelastic scattering data taken
at the TRIUMF UK detector array facility at TRIUMF-ISAC. Five resonances were observed corresponding to
states in 22Mg above the proton threshold. Four of these corresponded to states seen in previous transfer reaction
studies where firm spin-parity assignments could not be made. One new resonance, previously unobserved in
any reaction, was also seen. Where possible, resonance energies, partial widths, and spin-parity values of these
resonances were extracted. The correspondence between these states and possible analogs in the mirror nucleus
22Ne is discussed, as well as the relation to T = 1 states in the nucleus 22Na.
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I. INTRODUCTION

The structure of the radionuclide 22Mg has received
much attention in recent years by both experimentalists and
theorists because of its role in determining the properties of
astrophysical reaction rates relating to the production of 22Na
in explosive stellar scenarios.

The nuclide 22Na β decays with a half-life of 2.6 years with
the emission of a characteristic γ ray of energy 1.275 MeV.
This makes it an important observable in the quest to
understand nucleosynthesis along the proton-rich side of
stability around the NeNa cycles, in classical novae, x-ray
bursters, and type 1a supernovae. 22Na is primarily formed
in hot hydrogen-rich environments via the reaction 21Ne(p,
γ )22Na, the stable 21Ne being the result of β-decay of 21Na.
As temperatures rise, the formation of 22Mg via the reaction
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21Na(p, γ )22Mg is facilitated by resonances in the 21Na + p

system dependent on the nuclear properties of states in 22Mg.
This can lead to increased production of 22Na in these hot
environments since 22Mg(p, γ )23Al is slow; however, 22Na
may then be destroyed via further proton captures, the rate
of which may also be enhanced at these temperatures. The
net result is that the final abundance of 22Na is delicately
linked to the balance and interplay of the reaction network
in this mass region, with certain reactions, including 21Na(p,
γ )22Mg, playing a significant role.

Investigations with the Compton in γ -ray space telescope
(COMPTEL) found no detected flux of 1.275 MeV γ rays
above background from a survey of several ONe type novae
[1]. Subsequent studies of fluxes from particular sources,
including the classical slow CO white dwarf nova Casseopeiae
1995 and the ONe nova Velorum 1999, were able to place an
upper limit on the amount of 22Na in those sites based on
marginal detection of the 1.275 MeV line [2]. It was thought
that ONe novae were responsible for the synthesis of most of
the 22Na in the interstellar medium [3], and yet COMPTEL
was unable to detect the flux predicted by contemporary
nova models from candidate ONe novae. It is therefore still
of vital interest that the models of nova nucleosynthesis be
refined in order that future space-based observation, such as
the INTEGRAL mission [4], has improved confidence in its
identification of 22Na-producing sites.
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TABLE I. Excitation energies (keV) of 22Mg states above the proton threshold, resulting from previous experimental studies. Values marked
with an asterisk were used as calibration points in their respective experiments.

(p, t) (p, t) (3He, n) (3He, n) (3He, nγ ) (3He, nγ ) (16O,6He) (3He,6He) Average
[14] [8] [9] [11] [10] [22] [19] [17] valuesa J π

5713.9∗ 5738 ± 35 5699 ± 20 5680 ± 30 5714.4 ± 1.5 5713 ± 2 5711 ± 13 5713.9∗ 5713.9 ± 1.2 2+

5837 ± 5 5837 ± 5
5961.9 ± 2.5 5945 ± 20 5980 ± 30 5961.9 ± 2.5 0+

6045.8 ± 3.0 6061 ± 37 6041 ± 11 6051 ± 4 6045.6 ± 2.9 (1−)
6246.4 ± 5.1b (6281 ± 33)c 6263 ± 20c (6220 ± 50)c (6298 ± 50)c 6255 ± 10 6246 ± 4 6248.2 ± 4.5c (4+–6+)
6322.6 ± 6.0 (6281 ± 33)c (6220 ± 50)c (6298 ± 50)c 6329 ± 6 6322.6 ± 6.0
6613 ± 7d 6645 ± 44 6573 ± 20 6606 ± 11 6616 ± 4 6608.5 ± 5.6 (2+)
6787 ± 14 6836 ± 44 6770 ± 20 6760 ± 90 6767 ± 20 6771 ± 5 6780.4 ± 9.6 (3−)

6889 ± 10 6878 ± 9 6884 ± 13

aAverage values from Ref. [14].
bProbably a doublet [14].
cThe states at Ex = 6249 and 6323 keV were not resolved by these measurements.
dPossibly a multiplet of states [14].

Of critical importance to the understanding of the produc-
tion of 22Na in these sites and the improvement of the models is
the nuclear structure information about states in 22Mg relating
to the rate of the 21Na(p, γ )22Mg reaction. The final amount
of 22Na produced in the nova event in present hydrodynamic
simulations containing reaction networks can vary by orders
of magnitude given the degree of uncertainty present until
recently in the values of the reaction rate (see for example, the
work of Iliadis et al. [5] and Jose et al. [6], investigating the
effect of these uncertainties on abundances in nova models).

In this study, data taken in an experiment at the TRIUMF
UK detector array (TUDA) facility at TRIUMF-ISAC, pre-
viously reported in Ref. [7], are revisited through a superior
analysis. The results presented here supersede those of Ref. [7].

II. PREVIOUS EXPERIMENTAL STUDIES

It is known that 22Mg shows a strong two-particle structure
and its levels are populated strongly in two-particle transfer
reactions such as 24Mg(p, t)22Mg [8]. Prior to the recent
astrophysics interest in 22Mg, most of the structure had been
mapped using the aforementioned reaction, other reactions
such as 20Ne(3He, nγ )22Mg [9–11], and β spectroscopy of
22Al [12,13]. Recently, additional 24Mg(p, t)22Mg studies
[14–16] have been undertaken as well as studies of such
reactions as 25Mg(3He,6He)22Mg [17], 24Mg(4He,6He)22Mg
[18], and 12C(16O,6He)22Mg [19]. The work of Bateman et al.
[14] led to the identification of new astrophysically relevant
states, which were corroborated by Refs. [17–19]. The work
of Refs. [15,16] attempted to assign spin parities to some of
the astrophysically important levels.

Table I summarizes the experimental knowledge of astro-
physically relevant states in 22Mg prior to this experiment.
The proton threshold in 22Mg was previously thought to
be 5.502 MeV; however, recent measurements of resonance
energies in 21Na + p using the DRAGON recoil separator
at TRIUMF-ISAC implied that the previously accepted mass
of 22Mg was incorrect by 6 keV [20]. A reanalysis of one

of the experiments that measured the 22Mg mass produced
results consistent with this observation [21]. As a result, the
value of the proton threshold in 22Mg used in this work is
5.508 MeV.

III. EXPERIMENTAL SETUP

This study was performed using the first accelerated
radioactive beam at TRIUMF-ISAC [23] and the TUDA
facility located there. The 21Na ions with typical intensities of
5 × 107 ions/s were used, although one order of magnitude
greater intensity was available. The intensity used was limited
mainly by the CAMAC-based data acquisition system at
TUDA.

The thick target method [24–28] was used to study the
elastic scattering of the beam on protons over a range of
incident energies, which range was determined by the energy
loss of the beam in the target. Low-density polyethylene
([CH2]n) targets with thicknesses of 250 µg/cm2 were used.

In resonant elastic scattering, 22Mg is formed via sub-
Coulomb barrier fusion of 21Na + p as an excited compound
nucleus, whose states promptly decay back into 21Na + p, with
the 21Na in its ground state or in a low-energy excited state.
This process interferes with Coulomb elastic scattering leading
to the characteristic resonance patterns seen in the excitation
function. With the low beam energies used in this experiment,
only low-angular-momentum states in 22Mg could be formed
via this reaction channel.

Data were obtained at a series of beam energies (580, 690,
800, 880, 990, 1144, 1240, 1340, 1440, and 1560 keV/u) such
that the data overlapped in terms of beam energy loss in the
target. In this way, a complete excitation function of elastically
scattered protons was collected in the center-of-mass range
E = 400–1500 keV. Typical runs lasted 48 h, thereby enabling
sufficient statistics to be collected; the differential cross section
for these energies typically ranged from a few hundreds
of mb sr−1 to around 1 b sr−1. Targets were replaced peri-
odically throughout these runs to avoid problems associated
with hydrogen depletion of the polyethylene over time.
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FIG. 1. The TUDA facility with LEDA [29] arrays.

The elastically scattered protons were detected with two
LEDA silicon detector arrays [29], covering a laboratory
angular range of 4.6◦–33◦ (see Fig. 1 for a schematic of
the TUDA experimental setup). In inverse kinematics, this
corresponds to looking at angles in the center-of-mass system
of 114◦–171◦. Mylar foils of various thicknesses were used to
shield the detectors from scattered beam particles and recoil
particles from the carbon content in the target. One sector
of the array at larger laboratory angles was left uncovered
in order to simultaneously enable the normalization of data
via Rutherford scattering of 21Na on carbon. The experimental
resolution therefore consisted of small broadening components
from the energy loss straggling of the Mylar and within
the detector dead layer, combined with the small kinematic
broadening from the finite detector strip opening angles and
the intrinsic detector resolution.

Data were reduced by sorting events from detector elements
at the same angle into annular spectra, and gainmatched via
α-particle calibrations. The pulse-height defect associated with
the response of protons in silicon compared to α particles
was corrected [30]. Reverse energy loss routines, using a
parametrization of the Bethe-Bloch formalism [31], were
applied to correct for nonlinearities introduced by differential
energy loss through the Mylar and detector dead layer.

Nominal beam energies based on calibrations using the
DRAGON facility were used to fit the high-energy edges of the
proton energy spectra, using comparisons with Monte Carlo
simulations developed specifically for this experiment. This
methodology, which is described along with the rest of the data
reduction procedures in Ref. [32], enables the transformation
of the proton energy spectra at each laboratory angle into
the interaction center-of-mass energy, since the relationship
between these two energies is given by

Tp = 4E
mNa

mNa + mp

cos2 θp, (1)

where Tp is the laboratory proton energy, E is the interaction
energy in the center-of-mass system, mNa and mp are the
projectile and target masses, and θp is the laboratory scattering

angle of the proton. Elastic scattering data taken under identical
experimental conditions using an 880 keV/u 21Ne beam were
used to make fine calibration adjustments to the 21Na +
p data via an s-wave resonance in 21Ne + p at Ec.m. =
733 keV corresponding to the Ex = 7471 keV 2+ state in
22Na extensively studied in previous work [33–38].

The experimental resolution in the data from runs with
different beam energies and for each angle was determined
by comparing Monte Carlo simulations and the shape of the
proton spectra. The high-energy edges of the proton spectra
were compared to simulation allowing a convolution parameter
to be determined, which was modeled as a Gaussian with an
energy-dependent width. During the fitting of the experimental
data, the calculated excitation function was convoluted with
this function before it was compared to the data. Fits of
the calibration resonance at 733 keV in 21Ne + p confirmed
that the estimated width from the simulation agreed with the
convolution required to minimize the χ2. Typical values of the
Gaussian standard deviation in the convolution function were
of the order of 5 keV in the center-of-mass system for the inner
angles.

Five resonances were observed in the combined elastic and
inelastic data, as shown in Figs. 2 and 3. The first resonance
at 825 keV was seen in the elastic channel only. The second
resonance at 1083 keV shows up as a relatively large peak
in the inelastic channel, while appearing as a small distortion
in the elastic channel, lying on the low-energy side of the
third elastic resonance at 1107 keV. This third resonance is
also seen as a small peak in the inelastic channel. The fourth
resonance at 1288 keV has a large elastic component and the
largest inelastic peak of all the resonances. In the elastic data,
the shapes of the first and third resonances were, for the most
part, conserved over all the detection angles, while the fourth
resonance seemed to rapidly diminish in amplitude at higher
angles, suggesting a nonzero partial wave capture. The fifth
resonance at 1377 keV was seen only as a small peak in the
tail of the 1560-keV/u-thick target spectrum.

IV. MULTICHANNEL R-MATRIX ANALYSIS

The ground state spin-parity configurations of 21Na and
the proton are 3/2+ and 1/2+, respectively. This makes
the problem of 21Na + p scattering a nonzero spin one,
where the channel spin in the elastic channel can have the
values s = 1, 2. The existence of an excited 5/2+ state of
21Na at Ex = 322 keV means that above Ex = 5830 keV
in 22Mg the inelastic scattering channel is open, making
21Na + p scattering a multichannel problem. A spin-zero,
single-channel R-matrix formalism was used in the previous
publication of this experimental data in order to attempt to
derive resonance parameters [7]. This preliminary fit was
limited in its success; the use of the inconsistent formalism
introduced factors resulting in the underestimation of partial
widths and the inaccurate determination of resonance energies.
However, the aim of such a fit was to provide estimates of the
widths and rough positions of the resonances pending a full
analysis. No spin-parity assignments could be made in that
analysis.
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FIG. 2. (Color online) Upper: forward and backward angle data
from two detector annuli showing resonances in the elastic channel.
Lower: forward angle data showing resonances in the inelastic
channel. The y axis shows the differential cross section in arbitrary
units.

A single-channel formalism with the correct summations
over different channel spins was used in Ref. [32] in an
attempt to fit the elastic data only. Since no inelastic scattering
was observed from runs corresponding to the position of
the lowest energy elastic resonance (ER = 825 keV), a
proton partial width and resonance energy were extracted
from the data for this state. The state was assigned a 1+
configuration and identified as probably being the analog
of the 1+, Ex = 6854 keV state in 22Ne. This assignment
is consistent with a subsequent shell-model investigation of
Fortune et al. [39], who also assigned a 1+ configuration to
the state based on Coulomb-shift calculations and previously
derived spectroscopic factors.

The multichannel formalism and method used in this work
is described in detail in Appendix B.

Initial fits were investigated only for the data from the inner
LEDA annulus to determine trends that might assist in a global
fit. The low energy resonance was left fixed with values close
to those derived in Ref. [32]. The smallest χ2 for any single
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FIG. 3. The 1560 keV/nucleon proton spectrum summed over
all inner LEDA angles (4.6◦–11.7◦), showing the highest energy
resonance as an inelastic peak.

angle fit was found to be for the configuration 1+, 1−, 2+,
2−. The configuration of the fourth resonance was allowed to
vary, and the results are shown in Table II. The fits compared
to the excitation function can be seen in Fig. 4. With the
fourth resonance set at 2−, fits were attempted on the second
resonance in various different configurations. The fits can be
seen in Fig. 5, and the resulting R-matrix parameters are listed
in Table III.

The best overall fit was that of fit 1, with the configuration
1+, 1−, 2+, 2−. The next best fit was that of fit 5, configuration
1+, 2−, 2+, 2−. In the former case, the inelastic χ2

ν was 1.318,
in the latter 1.333. In general there is then a preference for the
assignment of the configuration 1− to the second resonance,
although the fit for a 2− configuration is close. Fit 6 had
significantly larger (greater than 2.0) values of χ2

ν over the
region of resonance 2, and an inelastic χ2

ν value of 1.337.
An attempt to fit a 3+ state to this resonance via d-wave
capture was unsuccesful in that the resonance would be forced
in MINUIT [40] to higher energies resulting in a smaller χ2

ν than
if the resonance were in the correct position; this fit was not
included in the results.

For the fits in which the configuration of the fourth
resonance was varied, only fit 1 has a value of χ2

ν less
than 2.0 over the region of the resonance. Fits 2 and 3 do
not reproduce the shape of the resonance well, while fit
4, although having a χ2

ν greater than 3 over the resonance
region, may be a reasonable fit to the resonance shape. The
inelastic χ2

ν in fit 4 was 3.045, considerably worse than that of
fit 1.

Although with the first and third resonances the fits
were very discriminating in the sense that no other con-
figuration for each resonance would even closely match
the resonance shape, the situation was more ambiguous
for the second and fourth resonances. To further con-
strain the possibilities, it was necessary to consider the
physical widths and positions of these resonances result-
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TABLE II. Pole energies, reduced partial widths, and fit parameters for fits of the inner LEDA annulus data, for the different possible spin
configurations of state 4, all other states being fixed in configuration as shown. The fifth state is the background level described in Appendix
B. The labels p and p′ denote the elastic and inelastic channel respectively. See Appendix A for an explanation of the parameters.

Resonance State spin J π Pole energy Reaction Channel spin s Orbital angular Reduced width
energy (MeV) Eλ (MeV) channel α momentum l γc (MeV1/2)

0.825 1+ 0.82449 p 1 0 0.68411
Fit 1 1.083 1− 1.13940 p 1 1 −0.56343

p 2 1 0.13356
p′ 2 1 0.35748

Elastic χ 2
ν = 1.268 1.108 2+ 1.13180 p 2 0 0.35273

p′ 2 0 0.08395
Inelastic χ 2

ν = 1.318 1.290 2− 1.80220 p 1 1 0.54715
p 2 1 1.08700
p′ 2 1 −0.88627
p′ 3 1 −0.00019

Bkgnd. state 1+ 277.940 p 1 0 21.4040

0.825 1+ 0.82449 p 1 0 0.68411
Fit 2 1.083 1− 1.19090 p 1 1 0.74682

p 2 1 0.40169
p′ 2 1 0.32372

Elastic χ 2
ν = 1.620 1.108 2+ 1.12670 p 2 0 0.31118

p′ 2 0 0.05673
Inelastic χ 2

ν = 1.445 1.290 1− 2.67030 p 1 1 0.77494
p 2 1 −1.66630
p′ 2 1 1.79230

Bkgnd. state 1+ 277.940 p 1 0 18.6890

0.825 1+ 0.82499 p 1 0 0.68411
Fit 3 1.083 1− 1.3257 p 1 1 1.1034

p 2 1 0.59496
p′ 2 1 0.58008

Elastic χ 2
ν = 2.145 1.108 2+ 1.1218 p 2 0 0.26654

p′ 2 0 0.04043
Inelastic χ 2

ν = 2.320 1.290 3− 1.4330 p 2 1 0.66077
p′ 2 1 −0.48704
p′ 3 1 −0.00034

Bkgnd. state 1+ 277.940 p 1 0 18.3700

0.825 1+ 0.82499 p 1 0 0.68411
Fit 4 1.083 1− 1.4274 p 1 1 −0.10912

p 2 1 −1.3771
p′ 2 1 0.86548

Elastic χ 2
ν = 2.012 1.108 2+ 1.1244 p 2 0 0.24054

p′ 2 0 0.04791
Inelastic χ 2

ν = 3.045 1.290 2+ 1.5357 p 2 0 0.34858
p′ 2 0 0.84119

Bkgnd. state 1+ 277.940 p 1 0 24.025

ing from the fits and to consider possible analog states
in 22Ne.

V. BOUNDARY TRANSFORMATIONS

To calculate resonance energies and experimental widths
from the internal R-matrix pole parameters, the method of
Barker [41] is used. The pole energy of a particular state is
equal to the resonance energy for that state when the shift

function is equal to the boundary value for each channel. In this
work the boundary conditions are calculated at E = 0.825 MeV
for the elastic channel and E = 0.503 MeV for the inelastic
channel. For each state the new boundary values B ′(E) must
be calculated, and the boundary matrix C of [41] must be
calculated via

Cλµ = Eλδλµ −
∑

c

(B ′
c − Bc)γcλγcµ. (2)
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FIG. 4. (Color online) Differential cross-section fits for 4.77◦ LEDA annulus data, for four spin configurations of state 4.

The subscript c denotes different reaction channels which
can occur with differing channel spin and orbital angular
momentum; δ is the Kronecker-delta symbol; γ is the reduced
width for a particular reaction channel (see Appendixes A and
B for a full description of these parameters). The eigenvalues
Dλ of this matrix are calculated, as well as the associated
eigenvector elements Kλµ; the new pole energies and reduced
widths are then given by

E′
λ = Dλ and γ ′

c = Kγc. (3)

In this way the boundary energy E is iterated until, for each
state, the recalculated pole energy E′

λ from the boundary trans-
formation is equal to E. Then B(E) = S(E′

λ) and therefore
E′

λ = ER,λ.

The experimentally observed energy-dependent partial
widths for the resonances can then be calculated by the relation



exp
cλ (E) = 2Pc(E)

(
γ R

cλ

)2

1 + (
γ R

cλ

)2 dS(E)
dE

∣∣
E=ER

, (4)

where γ R
cλ is the on-resonance reduced partial width for state

λ, channel c.
The values of the experimentally observed parameters

resulting from the boundary transformation for the ambiguous
fits 1, 4, and 5 are listed in Table IV. Dimensionless widths are
also listed, using the definition found in the work of Iliadis [42]

θ2
λc = γ 2

λc

(
h̄2

mcr2
c

)−1

, (5)
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FIG. 5. (Color online) Differential cross-section fits for 4.77◦

LEDA annulus data, for configurations of J π = 2+, 2− for the second
resonance.

and the dimensionless width θλc is related to the single-particle
dimensionless width θsp via

θ2
λc = C2Sθ2

sp, (6)

where C is the isospin Clebsch-Gordan coefficient and S is the
spectroscopic factor.

The final fit was made for the data sets at angles 4.77◦,
6.58◦, 8.38◦, and 9.709◦. Errors on the resonance energies were
calculated from the error in the calibration of the excitation
function from detected proton energy into center-of-mass
energy. This error is dominated by the uncertainty in the ISAC
beam energies. However, the use of the 733 keV resonance in
21Ne + p as a calibration point reduces the error at low energies
in the excitation function. Errors in the partial widths were

estimated by making fits with the value of the experimental
resolution set to its ±1σ values (as determined via Monte
Carlo simulations) and taking the uncertainty in the best-fit
parameters as the measure of the error in partial width. The
uncertainty introduced by the minimum MINUIT step size used
when making the fits was also included in the final error
analysis.

VI. DISCUSSION

A. 825 keV resonance; 22Mg (6333 ± 2.4 keV, 1+)

The energy of this state is closest to the 6322.6 ±
6.0 keV state seen in the (p, t) study of Ref. [14]. The adopted
value has since been based solely on that energy. However, the
more recent (3He,6He) study of Ref. [17] measured an energy
of 6329 ± 6 keV, although based on the same calibration res-
onance as the (p, t) study. The recent (p, γ ) measurement by
DRAGON [43] found this resonance to lie at Ec.m. = 821.3 ±
0.9 keV, resulting in an excitation energy of 6329 keV,
coinciding with the (3He,6He) result. Fortune et al. identified
this state with the 6854 keV 1+ state in 22Ne, which is known
to have an s-wave spectroscopic factor of 0.57 [39], based
on the shell-model and energy-shift calculations. This same
conclusion was reached based on similar Thomas-Ehrmann
shift calculations in Ref. [32]. The experimental width of
13.6 keV agrees well with the measured width of 16 keV in the
(p, γ ) measurement of the recent study using the DRAGON
recoil separator [43]. Fortune et al. also calculated a width of
16 keV for this state based on a single-particle width of
28 keV using the analog state spectroscopic factor.

This state is also likely to be the equivalent of the T = 1, 1+
state at 7408 keV (shown in Fig. 6 at energy 6761 keV because
of subtraction of 657 keV, the energy of the first T = 1 state
in 22Na) in 22Na, that being the only firm 1+ assignment for a
T = 1 state within reasonable energy range of 6333 keV that
does not already have a known analog in 22Mg.

B. 1083 keV resonance; 22Mg [6591 ± 10 keV, (1−)]

This previously unobserved state is well described by a
p-wave resonance in the elastic channel. The best fit occurs for
Jπ = 1−, although the fit for Jπ = 2− is not significantly worse.
For both configurations (fits 1 and 4), a similar resonance
energy is obtained. In the 1− case, a partial elastic width via
the s = 1 channel spin is preferred over the s = 2 partial width;
while in the 2− case, similar partial elastic widths are obtained
for s = 1, 2. The resulting total widths of 13 and 6 keV are
consistent with the apparent width of this resonance estimated
in Ref. [32]. The fact that there are no known 2− states in 22Ne
or 22Na in this energy range suggests that the state is more
likely the 1− configuration. There are two possible analog 1−
states in 22Ne. The first, at 6691 keV, is populated only weakly
in the 21Ne(d, p)22Ne reaction of Ref. [44], but populated
more strongly in the 18O(7Li, t)22Ne study of Ref. [45]. No
(d, p) spectroscopic factor is therefore known for this state.
The second state at 7052 keV has a known (d, p) spectroscopic
factor of 0.018; however, this state probably has an analog in
22Mg at a much higher energy than 6591 keV, possibly well
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TABLE III. Pole energies, reduced partial widths, and fit parameters for fits of the inner LEDA annulus data, for some different possible spin
configurations of state 2, all other states being fixed in configuration as shown (the 1− configuration is fit 1 of Table II). The fifth state is the
background level described in Appendix B. The labels p and p′ denote the elastic and inelastic channel respectively. See Appendix A for an
explanation of the parameters.

Resonance State Pole energy Reaction Channel Orbital angular Reduced width
energy (MeV) spin J π Eλ (MeV) channel α spin s momentum l γc (MeV1/2)

0.825 1+ 0.82449 p 1 0 0.68411
Fit 5 1.083 2− 1.1045 p 1 1 −0.28173

p 2 1 0.24246
p′ 2 1 0.21056

Elastic χ 2
ν = 1.290 1.108 2+ 1.13290 p 2 0 0.35984

p′ 2 0 0.08662
Inelastic χ 2

ν = 1.333 1.290 2− 1.80580 p 1 1 0.48737
p 2 1 1.11290
p′ 2 1 −0.89195
p′ 3 1 0.00048

Bkgnd. state 1+ 277.940 p 1 0 21.7830

0.825 1+ 0.82449 p 1 0 0.68411
Fit 6 1.083 2+ 1.1274 p 2 0 −0.30393

p′ 2 0 0.26373
Elastic χ 2

ν = 1.392 1.108 2+ 1.1647 p 2 0 0.27581
p′ 2 0 0.63240

Inelastic χ 2
ν = 1.338 1.290 2− 1.80090 p 1 1 0.40551

p 2 1 1.16300
p′ 2 1 −0.84279
p′ 3 1 0.00012

Bkgnd. state 1+ 277.940 p 1 0 22.7220

above 6800 keV. It is therefore suggested that the 6591 keV
state is a 1− configuration and is the analog of the 6691 keV
state in 22Ne. These states probably carry through into the
22Na T = 1 system via the tentative (1−, 2+) state at 7277 keV,
if this state turns out to be a 1− configuration. There are no
other known 1−, T = 1 states in 22Na within a reasonable
energy range.

C. 1107 keV resonance; 22Mg (6615 ± 11 keV, 2+)

The measured excitation energy is equal to the 6616 ±
4 keV measured in the (3He,6He) study of Ref. [17], compared
to the energy of 6608.5 ± 5.6 keV measured in the (p, t)
study of Ref. [14]. This state is almost certainly the analog
of the 6819 keV, 2+ state in 22Ne, which is known to have
an s-wave spectroscopic factor of 0.18 [39]. Indeed Fortune
et al. also suggested this assignment based on their Coulomb
energy calculations and, using a calculated value of 105 keV
for the single-particle width of this state (assuming s wave),
arrive at an estimated resonance width of 19 keV, which is in
excellent agreement with the measured value of 18 keV in this
work.

This state is also probably the analog of the known 2+,

T = 1 state at 7471 keV in 22Na.

D. 1288 keV resonance; 22Mg [6796 ± 17 keV, (1−,2−)]

The excitation energy of this state is close to that of the state
at 6787 keV measured by Bateman et al. [14] in the (p, t) study.
However, other experiments have measured varying values of

excitation energy for this state, ranging from 6760 to 6836 keV.
A previous assignment of 3− to this state was included in
the literature based on the distorted-wave Born approximation
(DWBA) fits to the (3He, n) data of Ref. [11]; however, the data
of that work show that the peak corresponding to the 6798 keV
state is not completely resolved from the peak corresponding to
the 6884 keV state. The DWBA fits for both these states seem
to exhibit similar properties, leading to the possibility that there
exists a component of each angular distribution in the other.
It is therefore suggested that such a spin-parity assignment
be taken as tentative rather than firm. Indeed our data seem to
suggest that the preferred configuration of this state is 1− or 2−.

E. 1377 keV resonance; 22Mg (6885 keV)

The excitation energy of this state is closest to that
of the 6884 keV state. No spin-parity assignment exists
for this state and in this work no assignment was made.
This state was seen only as a weak peak in the inelastic
channel and was subsequently not included in the R-matrix
analysis.

The results of this work and of these assignments are shown
in Table V; the analog system level scheme, indicating the
assignments made, is shown in Fig. 6.

VII. CONCLUSIONS

The spin-parity assignments made in this work help
clarify the structure of the A = 22, T = 1 system below
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TABLE IV. Experimental widths and resonance energies for the three best fits 1, 4, and 5, as determined by the boundary transformation
method.

Fit Resonance (J π ) Energy (keV) Widths (keV) l value Spin θ2
λc

1 1 (1+) 824.8 
p = 13.6 s-wave 1 0.55

tot = 13.6

2 (1−) 1082.9 
p = 11.3 p-wave 1 0.45

p = 0.8 p-wave 2 0.11

p′ = 0.7 p-wave 2 0.28

tot = 12.8

3 (2+) 1107.6 
p = 17.0 s-wave 2 0.28

p′ = 0.19 s-wave 2 0.06

tot = 17.19

4 (2−) 1290.1 
p = 23.1 p-wave 1 0.44

p = 65.5 p-wave 2 0.87

p′ = 12.7 p-wave 2 0.69

p′ = 0.0 p-wave 3 0.00

tot = 101.3

4 1 (1+) 824.8 
p = 13.6 s-wave 1 0.55

tot = 13.6

2 (2−) 1081.9 
p = 3.1 p-wave 1 0.22

p = 2.5 p-wave 2 0.20

p′ = 0.25 p-wave 2 0.16

p′ = 0.0 p-wave 3 0.00

tot = 5.9

3 (2+) 1107.6 
p = 17.7 s-wave 2 0.29

p′ = 0.2 s-wave 2 0.07

tot = 17.9

4 (2−) 1289.1 
p = 20.0 p-wave 1 0.40

p = 67.5 p-wave 2 0.89

p′ = 13.7 p-wave 2 0.72

p′ = 0.0 p-wave 3 0.00

tot = 101.2

5 1 (1+) 824.8 
p = 13.6 s-wave 1 0.55

tot = 13.6

2 (1−) 1090.5 
p = 0.5 p-wave 1 0.09

p = 40.9 p-wave 2 1.11

p′ = 3.7 p-wave 2 0.70

tot = 45.1

3 (2+) 1111.3 
p = 10.3 s-wave 2 0.22

p′ = 0.4 s-wave 2 0.09

tot = 10.7

4 (2+) 1299.9 
p = 22.7 s-wave 2 0.24

p′ = 40.1 s-wave 2 0.66

tot = 62.8

6900 keV. The 1+ resonance at 6333 keV and the 2+ resonance
at 6616 keV are paired with the states in 22Ne at 6854 and
6819 keV, respectively. This means that there are no other
known low-spin positive parity states in 22Ne below 6900 keV
without assigned mirror states in 22Mg, with the exception
of the (2, 3)+ state at 6636, which is known to have zero
s-wave strength anyway [44]. Therefore it is probable that
no previously unobserved s-wave resonances important to
the 21Na(p, γ )22Mg reaction rate exist below 6900 keV. This
argument is confirmed by the consideration of known T = 1

states in 22Na: Nearly every state above the 21Na + p threshold
up to 6798 keV can be accounted for in 22Na (see Fig. 6).
This is important given that several experimental programs
currently exist which aim to use a variety of different methods
to find additional contributing resonances in 21Na + p. Of
course, this argument fails if there are undiscovered low-spin
positive parity states in 22Ne. However, the shell model predicts
very well the known ordering of these states in 22Ne, as
demonstrated in the work of Fortune et al. [39], and all known
positive parity states below 6900 keV are accounted for in
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TABLE V. Experimental resonance energies, widths, and spin-parity assignments for 21Na + p data, including suggested analog assignments
in 22Ne.

Resonance J π Experimental l Excitation energy Analog state
energy (keV) widths (keV) in 22Mg (keV) in 22Ne (keV)

824.8 ± 2.4 1+ 
tot = 13.6 ± 1.4 6332.8 ± 2.4 6853.5 ± 0.12

p = 13.6 ± 1.4 0

1082.5 ± 10.0 (1−) 
tot = 12.8 ± 1.51 6590.5 ± 10.0 6691 ± 4

p = 11.9 ± 1.4 1

p′ = 0.94 ± 0.11 1

1107.2 ± 10.8 2+ 
tot = 17.9 ± 1.6 6615.2 ± 10.8 6819.4 ± 0.16

p = 17.6 ± 1.5 0

p′ = 0.3 ± 0.1 0

1287.5 ± 17.0 (1−, 2−) 
tot = 105.0 ± 32.8 6795.5 ± 17.0

p = 93.9 ± 32.0 1

p′ = 11.1 ± 0.8 1

this case; in fact the only states not included in the shell-model
estimate are the 1− state at 6691 keV (paired with our measured
1− state at 6591 keV in 22Mg) and the 3− state at 5910 keV.

It is known from the DRAGON studies [43] that resonant
capture to the 6333 keV 1+ state and the 6248 keV state
(corresponding to a resonance energy of 738 keV) in 22Mg will
dominate the reaction rate above temperatures of 1.1 GK, too
high for novae, but perhaps interesting in the consideration of

nucleosynthesis within the accretion disks of x-ray binaries.
Higher energy resonances than this are simply not broad or
strong enough to affect the reaction rate at low temperatures.
However, one must also consider the radiative capture from the
first excited state of 21Na at 332 keV, which will be populated
in a thermal bath at astrophysical temperatures. The ratio
of the population of the first excited state to the population
of the ground state in full thermal equilibrium is given

FIG. 6. The A = 22, T = 1 analog system
showing suggested mirror states for the three levels
assigned with spin-parity values in this work. The
level energies in the 22Na scheme are the excitation
energies of the T = 1 states minus 657 keV, the
energy of the lowest T = 1 state, in order to bring
them in line with the T = 1 structure of 22Ne and
22Mg.

025802-10



MULTICHANNEL R-MATRIX ANALYSIS OF ELASTIC . . . PHYSICAL REVIEW C 71, 025802 (2005)

0.1 0.5 0.9 1.3 1.7
T (GK)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

re
ac

tio
n 

ra
te

 (
cm

3  s
−1

 m
ol

−1
)

ground state rate
332 keV state rate

FIG. 7. Total 21Na( p, γ )22Mg reaction rate
as calculated using resonance strengths from
ref. [43] and the partial widths measured in this
work. Capture from the thermally populated first
excited state of 21Na (Ex = 332 keV) is included.

by
n1

n0
= g1

g0
exp(−Ex/kT ), (7)

where gi = 2Ji + 1. Thus the total reaction rate (ground state
and first excited state) can be written as

〈σν〉tot = NA

(
〈σν〉0 + n1

n0
〈σν〉1

)
. (8)

We calculated both reaction rates per particle pair using the
resonance parameters supplied in the DRAGON study [43]
and the results of this work. The resonances seen in this
work were treated as broad, and therefore the rate was cal-
culated by numerical integration. All lower energy resonances
were treated using the narrow resonance formalism. The γ

widths of the 825 and 1108 keV resonances were calculated
from the DRAGON (p, γ ) resonance strength measurements
and the proton partial widths determined in this work,
via


γ = 
p + 
p′

ω
p/ωγ − 1
. (9)

The 
 width for the 1083 keV resonance was estimated via
the lifetime of the analog state at 6691 keV in 22Ne. The 


width of the 1290 keV resonance was set to 1 eV, since its
analog state is not known.

The energy dependence of the partial proton widths was
treated using a parametrization in terms of the proton width
on-resonance and the penetrability, that is,


p(E) = 
p(ER)

√
E

ER

Pl(E, r)

Pl(ER, r)
. (10)

Figure 7 shows the resulting reaction rate. The dashed
curve is the unthermalized reaction rate from the first excited

state (the rate assuming equal population of the ground state
and first excited state, with no thermal excitation or decay
between those states). The black solid curves, which are
indistinguishable, are the ground-state reaction rate, and the
total reaction rate, taking into account the thermal population
of the first excited state and its subsequent capture. The
rate from the first excited state is so small that it makes
negligible difference to the total rate. The conclusion of this
work therefore is that the rates found in this calculation are
not significantly different from those found in the DRAGON
work [43], with the 206 keV resonance dominating at nova
temperatures and the 825 keV resonance becoming dominant
above T = 1.1 GK.
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APPENDIX A: R-MATRIX PARAMETERS GLOSSARY

Table VI lists the notation and symbols of the multichannel
R-matrix formalism of Lane and Thomas [46].
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TABLE VI. Glossary of terms used in R-matrix formalism of Ref. [46]. Primed quantities denote values in
the exit channel.

I1 Projectile spin
I2 Target spin
E Relative energy in center of mass

Indices:
α Channel index
s Channel spin index
l Orbital angular momentum index
J Compound state spin index

λ,µ Level indices
L Angular momentum summation index 0 � L� |J1| + |J2|

Quantities independent of bound-state properties:
kα(E) Wave number for channel α

θα′ Exit channel scattering angle in c.m. frame
Cα′ (E) Coulomb scattering amplitude for exit channel

Pl(cos θα′ ) Legendre polynomial
Pαl(E) Penetrability
Sαl(E) Energy shift-function
Bαl Boundary parameter
rα Channel radius
Z̄ Racah-like angular momentum factors

ωαl(E) Coulomb phase shift
φαl(E) Hard-sphere phase shift

Fαl(E), Gαl(E) Regular and irregular solutions to Coulomb wave function

Quantities dependent on bound-state properties:
γ J

λαsl Reduced partial width for level λ

EJ
λ Pole energy for level λ

Aλµ Level matrix element
UJ

α′s′ l′,αsl
Collision matrix element

T J
α′s′ l′,αsl

Transition matrix element

APPENDIX B: MULTICHANNEL R-MATRIX FORMALISM

The multichannel formalism used here follows the standard
R-matrix theory of Lane and Thomas [46]. The differential
cross section for a scattering process via entrance chan-
nel α to an exit channel α′ for given entrance and exit
spin channels s and s ′ is given by a corrected version of
Eq. VIII(2.6) of [46] by L. Buchmann (Lane and Thomas omit-
ted the Kronecker delta in the third component of the sum, and
by not conjugating the T in the same term, they had a definite
error):

(2s + 1)
k2
α

π
dσαs,α′s ′d�α′

= (2s + 1)|Cα′(θα′)|2δα′s ′,αs

+ 1

π

∑
L

BL(α′s ′, αs)PL(cos θα′ ) − δα′s ′,αs(4π )−
1
2

×
∑
J l

(2J + 1)2� [
i
(
T J

α′s ′l′,αsl

)∗
Cα′(θα′ )Pl(cos θα′ )

]
.

(B1)

This can be identified as the sum of separate Coulomb,
resonant, and interference terms. In the resonant term, the

coefficients BL are given by

BL(α′s ′, αs) = 1

4
(−1)s−s ′ ∑

J1J2l1l2l
′
1l

′
2

Z̄(l1J1l2J2, sL)

× Z̄(l′1J1l
′
2J2, s

′L)
(
T

J1

α′s ′l′1,αsl1

)(
T

J2

α′s ′l′2,αsl2

)∗
.

(B2)

The only terms in these equations that involve the
description of internal bound states are the transition matrices
T. This is important because it essentially defines how the
fitting program constructs the cross-section values prior to its
chi-squared reduction procedure. The more terms that can be
left out of the minimizing subroutine, the faster the fitting
process becomes.

The method chosen to construct the transition matrices is
the level matrix approach [47]. The transition matrices are
constructed from the collision matrix

T J
α′s ′l′,αsl = e2iωαl δα′s ′l′,αsl − UJ

α′s ′l′,αsl , (B3)

which results from a sum over the level matrix A

UJ
α′s ′l′,αsl = ei[(ωαl+ωα′ l′ )−(φαl+φα′ l′ )]δα′s ′,αs

+ 2i
√
Pαl

∑
λµ

γ J
λαslγ

J
µα′s ′l′Aλµ

√
Pα′l′ , (B4)
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defined by its inverse

(A−1)λµ = (
EJ

λ − E
)
δλµ

−
∑
αsl

γ J
λαslγ

J
µα′s ′l′ (Sαl − Bαl + iPαl). (B5)

The reduced partial widths and pole energies γ J
λαsl , Eλ are

the free parameters in the fit. All other parameters, such as the
boundary conditions Bαl , the energy shift functions Sαl , and
the penetrabilities Pαl are calculated at program initialization
time, while the level matrix, collision matrix, transition matrix,
and cross section are calculated from these and the freely
varying reduced widths within the minimizing routine. Other
parameters calculated at initialization are the Coulomb and
hard-sphere phase shifts ωαl and φαl , and the Racah-like
angular momentum addition terms Z̄.

The observed differential cross sections, to be compared
to the experimental data, are given by summing over channel
spins, that is,

dσαα′ = 1

(2I1 + 1)(2I2 + 1)

∑
ss ′

(2s + 1)dσαs,α′s ′ . (B6)

A. Fitting procedure

The number of free parameters varied depending on the
chosen spin-parity configurations of the levels. Here we
describe the parameters required for each observed resonance
in turn.

825 keV resonance

The lowest energy resonance was found previously in [32]
to require a 1+ configuration, via s-wave capture. This requires
one pole energy E1

1 and one reduced partial width γ 1
1110 since

l = 0 can only couple to a 1+ state via channel spin s = 1 in
this case. Although the l = 2 channel is also open in this case,
the amplitudes for this will be small based on penetrability
arguments. It was found that including l = 2 widths in the fit
had negligible consequences.

1083 keV resonance

The second lowest resonance has almost no discernible
strength in the elastic channel and yet it has a significant
inelastic component. This makes the possibility of s-wave
capture in the entrance channel least probable since the elastic
component, even for a small partial elastic width, would show
more strongly as a typical s-wave shape, given the implied total
width from the inelastic peak. Although p-wave capture would
seem to better explain the observed distortion in the elastic
spectrum at the position of this resonance, d wave capture is
also a possibility since in such a case there may be an s wave
component to the exit channel leading to the comparatively
large inelastic strength observed.

Fits were employed setting this resonance to 2+ for s-wave
capture, requiring the free parameters

Jπ = 2+ : E2
2 , γ 2

2120, γ 2
2220.

This was chosen because of the existence of 2+ states in 22Ne at
energies close to that of this resonance without known analog
states in this region of 22Mg.

Fits for p-wave capture were also investigated setting this
resonance to 1− and 2− configurations, requiring

Jπ = 1− : E1
2 , γ 1

2111, γ 1
2121, γ 1

2221,

J π = 2− : E2
2 , γ 2

2111, γ 2
2121, γ 2

2221.

The existence of a possible 3+ state at 6636 keV in 22Ne
with a known s-wave spectroscopic factor of zero, and a d-wave
spectroscopic factor of 0.1 [39] prompted a fit of this resonance
as a 3+ configuration, d-wave in the entrance channel and s-,
d waves in the exit channel, requiring

Jπ = 3+ : E3
2 , γ 3

2112, γ 3
2122, γ 3

2230, γ 3
2222, γ 3

2232.

1107 keV resonance

We attempted to fit the third resonance with both 1+ and 2+
configurations via l = 0 in the entrance (elastic) channel, based
on the observation that the morphology of the resonance shape
closely resembles a typical s-wave shape over the angular
range of the data, much like the lowest resonance. The inelastic
peak is small for this resonance, and the single-channel fit
strongly favors a 2+ configuration. The pole energy E2

3 is a
required free parameter, as well as the elastic reduced partial
width γ 2

3120. However, this state can couple to the inelastic exit
channel via channel spin s ′ = 2, 3. For s ′ = 2, this may occur
coupled with l′ = 0 or l′ = 2, requiring two reduced partial
widths. For s ′ = 3 this can couple via l′ = 2 only. It was found
that the first-order partial wave l′ = 0 was the only requirement
in fitting, since the addition of the l′ = 2 component did not
significantly enhance the cross section. Therefore, for this level
the inelastic reduced partial width γ 2

3220 was a free parameter,
making the number of free parameters for this level equal to 3.

1288 keV resonance

The fourth resonance least resembles an s wave out of the
three large elastic resonances seen in the data. The amplitude of
this resonance falls off more rapidly at larger angles, consistent
with either the Legendre polynomial contribution from higher l

values, or substantial broadening of an already low amplitude
resonance. Due to the large visible width of this resonance,
it is unlikely that it is formed via l = 2 or higher from
penetrability arguments, leading to the conclusion that this is
either a negative parity state formed via l = 1, or a broadened
s-wave capture. States of Jπ = (0–3)− may be formed via
l = 1 coupled with s = 1, 2. However, the existence of a large
inelastic component in the data eliminates the possibility of
a 0− configuration which cannot couple with s ′ = 2, 3 via a
significantly low odd value of exit orbital angular momentum,
i.e., l′ = 1. The parameters required for the p-wave fits were

Jπ = 1− : E1
4 , γ 1

4111, γ 1
4121, γ 1

4221,

J π = 2− : E2
4 , γ 2

4111, γ 2
4121, γ 2

4221, γ 2
4231,
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Jπ = 3− : E3
4 , γ 3

4121, γ 3
4221, γ 3

4231.

A fit for s-wave capture to 2+ was also investigated, based
on the existence of possible 2+ analog states in 22Ne,

Jπ = 2+ : E2
4 , γ 2

4120, γ 2
4220.

The fifth resonance at 1377 keV was not included in the
present R-matrix fits, although its position was determined
from the energy of the inelastic peak.

A background level was used in the fit to simulate the
contributions from higher lying states. Although a rigorous
fit should use a background level for each spin configuration
represented in the fit, it was found that simply including one
background term of 1+ configuration was sufficient to fit the
data. The parameters E1

5 and γ 1
5120 were used for this.

In addition to the resonance parameters, a normalization
factor was included as a fit parameter. The best fit value of this
from the global four-angle fit was 1.8939 ± 0.0014.

B. Inclusion of optical-model phase shifts

During fitting it was found that the R-matrix analysis
overestimated the cross section for center-of-mass ener-
gies greater than about 1 MeV. The contribution causing
this was found to be from the hard-sphere phase shift, which
represents potential (elastic) scattering from the nuclear sur-
face. The usual hard-sphere scattering phase shift implemented
in the R matrix is given by

φαl = arctan
Fαl

Gαl

(B7)

and represents scattering from a square well. It is possible to
replace the square potential with a more realistic Woods-Saxon
potential and to simply substitute the hard-sphere phase shift
with a phase shift derived from this [48]. This can be done
using optical-model calculations for the 21Na + p system.
Phase shift substitutions have been performed successfully in
previous R-matrix fitting of resonance data (see for example,
Namoshi et al. [49]).

The optical-model calculations were made with a modified
version of the search code HIOPTIM version 03.4 [50]. This code
calculates the scattering matrix elements Sl(l, J ) and their real
and imaginary parts SR(l, J ) and SI (l, J ); the code was altered
to output the transmission coefficients T (l) via

T (l) = 1 − S2
l (l, J ), (B8)

and the nuclear phase shifts φ(l) via

φ(l) = 1

2
tan−1[SR(l, J ), SI (l, J )]. (B9)

A similar modification was inserted where the Coulomb
phase shifts ω(l) were calculated from a high-l series approx-
imation and iterated down to l = 0.

In general, the shape of the calculated differential cross
sections at very low energies is not very sensitive to the optical-
model parameters, but the main difficulty for calculations at
astrophysical energies is twofold. First, there are few published
parameters for the (projectile) nucleus + proton system, since
the projectile is often a radioactive species and obviously
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FIG. 8. Comparison between calculated hard-sphere and optical-
model phase shifts for partial waves from l = 0–3, in the 21Na + p
system between 0.5 and 1.5 MeV.

has never been studied in normal kinematics, and there are
still too few optical-model studies in inverse kinematics with
radioactive beams. Second, even when there are published
parameters for the chosen nucleus, the optical parameters are
usually published for beam energies that far exceed those used
in most astrophysics experiments. Thus the best strategy is to
choose a global prescription of the optical parameters whose
values have a dependence upon Z,N , and A and also upon the
beam energy E.

For this work, we chose the prescription of Becchetti and
Greenlees [51]; their parameters were obtained by global fits
to many datasets at many energies. The real potential has a
standard Woods-Saxon shape

V (r) = −VR

1 + exp(XR)
, (B10)

with XR = (r − RR)/aR , where VR is the potential depth, RR

is the radius parameter, and aR is the diffuseness. A two-
component imaginary potential comprises a Woods-Saxon
shape plus a first-derivative Woods-Saxon shape with the same
geometric parameters

W (r) = −WI

1 + exp(XI )
− 4Wder

exp(XI )

[1 + exp(XI )]2
, (B11)

with XI = (r − RI )/aI . A spin-orbit potential is also included
of the form

Vs(r) = Vso

(
h̄

mπc

)2 exp(Xso)

raso[1 + exp(Xso)]2
, (B12)

with Xso = (r − Rso)/aso. The Becchetti and Greenlees
parameters have the following values:

VR = 54 − 0.32E + 24(N − Z)/A + 0.4Z/A1/3, (B13)

and

RR = 1.17A1/3, rR = 0.75. (B14)

The terms in VR represent, respectively, the central potential,
the energy term, the symmetry term, and the correction term
for the Coulomb potential.
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WI is equal to 0.22E − 2.7 or zero, whichever is greater;
in this work the value of WI is always zero. Wder is
equal to 11.8 − 0.25E + 12(N − Z)/A or zero, whichever
is greater, with RI = 1.32A1/3, aI = 0.51 + 0.7(N − Z)/A,
and aI = 0.477. Vso = 6.2, Rso = 1.01A1/3, and aso =
0.75.

The potential depth values and the beam energy E are in
MeV, and the values of the radii R and diffuseness a are in
fm. The Coulomb radius was chosen to be Rc = 1.39(A1/3 +

1) fm. The values for VR (Wder) ranged from 54.28 (11.1) to
53.95 (10.84) over the energy range from 0.5 to 1.5 MeV
(CM), and the calculations were made in steps of 0.01 MeV.
The numerical integration of the radial wave functions in the
HIOPTIM code is the very accurate Baylis-Peel algorithm [52],
and integration was extended to 20 fm in steps of 0.025 fm;
partial waves from l = 0 to l = 3 were used. The resulting
phase shifts can be seen compared with hard-sphere phase
shifts in Fig. 8.
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