Direct Measurement of the $^{21}{\rm Na}(p,\gamma)^{22}{\rm Mg}$ Reaction: Resonance Strengths and Gamma–Gamma Analysis M. Trinczek^{a*}, C.C. Jewett^b, J.M. D'Auria^c, S. Bishop^{c†}, L. Buchmann^a, A.A. Chen^d, S. Engel^e, D. Gigliotti^f, U. Greife^b, D. Hunter^{c‡}, A. Hussein^f, D. Hutcheon^a, J. José^{gh}, A.M. Laird^{a§}, M. Lamey^c, R. Lewisⁱ, A. Olin^a, D. Ottewell^a, P. Parkerⁱ, M.M. Pavan^a, J.E. Pearson^d, J. Rogers^a, C. Ruiz^c, C. Wrede^{c¶} ^aTRIUMF, Vancouver, British Columbia, Canada ^bColorado School of Mines, Golden, Colorado, USA ^cSimon Fraser University, Burnaby, British Columbia, Canada ^dMcMaster University, Hamilton, Ontario, Canada ^eRuhr-Universität, Bochum, Germany ^fUniversity of Northern British Columbia, Prince George, British Columbia, Canada gInstitut d'Estudis Espacials de Catalunya, UPC, Barcelona, Spain ^hUniversitat Politècnica de Catalunya, Barcelona, Spain ⁱYale University, New Haven, Connecticut, USA A series of astrophysical measurements was recently completed at TRIUMF, related to the unknown total rate of the 21 Na $(p,\gamma)^{22}$ Mg reaction. With a high intensity 21 Na beam from the ISAC facility, the DRAGON recoil mass spectrometer was used to directly measure seven resonances at center of mass energies from $E_{\rm c.m.}=200$ to 1135 keV and determine their respective contributions to the 21 Na $(p,\gamma)^{22}$ Mg reaction rate in novae and x-ray bursts, as well as their impact on 22 Na production in novae. This study also allowed the investigation of different excited states in 22 Mg; proposed decays and spin assignments are given for the 6246, 6329, and 6609 keV levels. ## 1. Introduction Novae are stellar events where light and intermediate-mass elements can be synthesized through proton capture on radioactive nuclei. The observation of γ radiation from such ^{*}Electronic address: trin@triumf.ca (M. Trinczek) [†]Present address: Heavy Ion Nuclear Physics Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan [‡]Present address: Langara College, Vancouver, British Columbia, Canada [§]Present address: University of York, York, England [¶]Present address: Yale University, New Haven, Connecticut, USA radioactive nuclei may allow insight into the physical processes of novae. For example, it is believed that detection of the 1275 keV γ ray from the β^+ decay of ²²Na will further the understanding of oxygen–neon novae. At high temperatures and densities, ²²Na is thought to be produced primarily through the ²⁰Ne $(p,\gamma)^{21}$ Na $(p,\gamma)^{22}$ Mg (β^+) reaction sequence; however, the rate of ²¹Na $(p,\gamma)^{22}$ Mg remains as a large uncertainty, due mostly to the lack of knowledge about the states above the proton threshold in ²²Mg. Consequently, many experiments have been performed to better understand the structure of ²²Mg [1–9]. The DRAGON group at TRIUMF-ISAC performed the first direct measurement of the rate of the 21 Na $(p,\gamma)^{22}$ Mg reaction, populating the important $E_{\rm X}=5714$ keV resonant state in 22 Mg and measuring its strength [6]. The group has just completed a series of measurements of the resonance strengths at $E_{\rm X}=5962,6046,6246,6329,$ and 6609 keV and deduced their respective contributions to the 22 Na production rate in oxygen-neon novae and in x-ray bursts [9]. A summary of the levels is shown in figure 1. With the data gathered in this study, it is also possible to propose decays and spin assignments in 22 Mg based on $\gamma-\gamma$ correlation analysis. Figure 1. Level scheme of the ²²Mg nucleus showing the measured resonant energies $E_{\rm c.m.}$ of $^{21}{\rm Na}(p,\gamma)^{22}{\rm Mg}$, the corresponding excitation energies $E_{\rm X}$, and the presumed spin assignments of the states of astrophysical interest. The arrows on the right show the Gamow windows for ²¹Na+p burning for some temperatures (in GK) typical of oxygen-neon novae or x-ray bursts. DRAGON group has directly measured the states from $E_{\rm X}=5714$ to 6609 keV, and determined their respective contributions to the ²²Na production rate in oxygen-neon novae and in x-ray bursts [9]. In the present study, the γ decay of the 6246, 6329, and 6609 keV levels were investigated to assign proposed γ transitions. Analysis is continuing for the 6046 and 5962 keV levels and it is planned to gather more data to investigate the level at 6587 keV. ## 2. Experiment and Results The DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) facility makes use of a windowless gas target, surrounded by a 30-element BGO γ -detector array, coupled to a recoil mass spectrometer and a final focus heavy ion detector system [10]. In this study, a radioactive ion beam of about 10^9 ²¹Na per second was delivered by ISAC [11] onto a hydrogen target and the resulting ²²Mg recoils were observed in coincidence with the reaction's γ radiation. The data acquisition system was configured to allow for the observation of multiple γ rays for each individual reaction event. In the $\gamma-\gamma$ analysis, the energy of the highest energy detected gamma (γ_1) is plotted versus the next most energetic gamma (γ_2) to show the $\gamma-\gamma$ correlations of the decay. From our data, we are able to assign the probable γ decays and spins for the three resonant (excited) states of 1101 (6609), 821 (6329), and 738 (6246) keV in ²²Mg (figure 2), with guidance from the analogue states in the better-known mirror nucleus ²²Ne. Figure 2. The left hand side shows the detected γ – γ correlations for the (a) 1101, (b) 821, and (c) 738 keV resonance states and their projections. The right hand side shows the corresponding levels in 22 Mg and proposed γ transitions. The resolution of the spectra ~ 200 keV. The 22 Mg levels are taken from Firestone, Ref. [12]. The data plots (left side) show the $\gamma-\gamma$ correlations for a given ²²Mg level (right side). As an example, consider the 738 keV resonance. It is proposed that the decays are 6246 \rightarrow 3308 yielding a 2938 keV γ ray, then 3308 \rightarrow 1246 giving 2062 keV, and 1246 \rightarrow 0 giving 1246 keV. In the figure then, there should be a cluster about $\gamma_1 = 2938$ keV and $\gamma_2 = 2062$ or 1246 keV. Alternatively, if $\gamma_1 = 2938$ keV is not observed, then there should be a cluster about $\gamma_1 = 2062$ and $\gamma_2 = 1246$ keV. Based on this technique, the decays between levels is given in the right-hand side of figure 2. The spin assignments are presented in table 1, along with the analogue states in the ²²Ne mirror nucleus. Table 1 Proposed spin assignments of levels in ²²Mg are listed along with their analogue states in the mirror nucleus ²²Ne. | $E_{\text{c.m.}} (\text{keV})^a$ | ²² Mg Level (keV) | J^{π} | 22 Ne Level (keV) b | J^{π} | |----------------------------------|------------------------------|-----------|-----------------------------|-----------| | 1101.1 ± 2.5 | 6609 | 2+ | 6817 | 2+ | | 821.3 ± 0.9 | 6329 | 1+ | 6853 | 1^+ | | 738.4 ± 1.0 | 6246 | 4^+ | 6345 | 4^{+} | ^a Taken from D'Auria et al., Ref. [9]. ## 3. Summary From the direct measurement of the $^{21}{\rm Na}(p,\gamma)^{22}{\rm Mg}$ reaction, the DRAGON group has proposed decays and spin assignments for the 6246, 6329, and 6609 keV levels in $^{22}{\rm Mg}$ through $\gamma-\gamma$ analysis. It is planned to further analyze the decays of other lower-lying states and set branching ratios. In addition, new data is being taken to allow comment on the 6857 keV state. ## REFERENCES - 1. C. Rolfs et al., Nucl. Phys. **A191**, 209 (1972). - 2. N. Bateman et al., Phys. Rev. C 63, 035803 (2001). - 3. A.A. Chen et al., Phys. Rev. C 63, 065807 (2001). - 4. J.A. Caggiano et al., Phys. Rev. C 66, 015804 (2002). - 5. C. Ruiz et al., Phys. Rev. C 65, 042801(R) (2002). - 6. S. Bishop et al., Phys. Rev. Lett. **90**, 162501 (2003). - 7. B. Davids et al., Phys. Rev. C 68, 055805 (2003). - 8. H.T. Fortune et al., Phys. Rev. C 68, 035802 (2003). - 9. J.M. D'Auria et al., Phys. Rev. C 69, 065803 (2004). - 10. D.A. Hutcheon et al., Nucl. Instrum. Methods Phys. Res. A 498, 190 (2003). - 11. R.E. Laxdal et al., Nucl. Phys. A701, 647 (2002). - 12. Richard B. Firestone, <u>Table of Isotopes</u>, Eighth Edition (Wiley, New York, 1996). $[^]b$ Taken from Firestone, Ref. [12].